Selection bias occurs when those chosen to participate in a study are not representative of the target population, limiting how much we can trust the study results. In order to quantify this selection bias, researchers have come up with a metric known as the diagnosis-to-treatment interval (DTI), which measures treatment urgency among trial participants. DTI, however, is not an ideal metric for selecting trial participants, as non-biological factors like access to medical care also influence the amount of time between diagnosis and treatment. Finding a biological basis for DTI would offer a more objective measure of clinical urgency, and thus be more useful in mitigating selection bias.
Damon Runyon News
Note: This is an extended version of an interview published in the Spring 2021 issue of our print newsletter, Momentum.
Former Damon Runyon Clinical Investigator Li Li, MD, PhD, MPH has been appointed to the U.S. Preventive Services Task Force, a sixteen-member panel of experts that makes recommendations for screenings and other preventive healthcare measures for the entire U.S. population. He spoke with us about the role of prevention in the continuum of cancer care.
After successfully reversing leukemia development in mice and human cell lines, former Damon Runyon-Lilly Clinical Investigator Scott Armstrong, MD, PhD, and his lab at Dana-Farber Cancer Institute are testing a novel therapeutic approach in clinical trials, open to patients as young as one month old. The drug, known as SNDX-5613, is currently being evaluated as a treatment for acute myeloid leukemia (AML), but may one day be used to prevent the cancer from developing in the first place.
The American Society of Clinical Oncologists hosted their annual meeting this past weekend (June 4th-8th, 2021), giving oncology professionals from around the globe the chance to present cutting-edge research on new cancer therapies, ongoing clinical trials, and standards of patient care. Among the studies presented were those of several former and current Damon Runyon Clinical Investigators, whose research unites lab inquiry with clinical application.
One of the many ways tumor cells evade capture by the immune system is by presenting proteins on their surface that signal “don’t touch me” to immune T-cells. These proteins are called immune checkpoints. Therapies that block them—known as immune checkpoint blockades (ICB)—are remarkably effective, but they only work for a minority of cancer patients. In search of more widely beneficial immunotherapies, Damon Runyon Physician-Scientist Gabriel Griffin, MD, and colleagues at the Broad Institute of MIT and Harvard are investigating other mechanisms of immune system evasion to target in combination with ICB. Specifically, they have set out to find epigenetic regulators—proteins that turn genes “on” and “off”—that play a role in helping cancer cells avoid detection.
Prostate cancer (PCa), second only to skin cancer in prevalence among American men, has multiple subtypes defined by which key gene was mutated early in disease progression. Molecular analysis of PCa tumors has illuminated these subtype-defining genetic events, yet it remains unclear how these early alterations influence later genetic events and, eventually, result in different clinical outcomes. While molecular characterization often guides treatment decisions in breast and other cancers, more clarity is needed about these pathways for PCa subtyping to be clinically relevant. At Weill Cornell Medicine, Damon Runyon Clinical Investigator Chris Barbieri, MD, PhD, and colleagues are leading this charge.
ArvCon, now in its seventh year, is a weekend featuring multiple tabletop roleplaying game sessions, a concert, giveaways, and other surprises, benefiting the Damon Runyon Cancer Research Foundation. Damon Runyon’s award programs are targeted to have the greatest impact on cancer research, providing critical early career support to researchers pursuing work with a high potential to impact all types of cancer. Damon Runyon’s mission is to foster new generations of elite scientists and fill gaps in traditional research funding that threaten future breakthroughs.
Five scientists with exceptional promise and novel approaches to fighting cancer have been named the 2021 recipients of the Damon Runyon Physician-Scientist Training Award. The awardees were selected through a highly competitive and rigorous process by a scientific committee comprised of leading cancer researchers who are themselves physician-scientists.
In addition to his Damon Runyon-funded research project, which aims to optimize the delivery of the chemotherapy drug cisplatin, Quantitative Biology Fellow Vitor Mori, PhD, has dedicated some of his efforts over the past year to addressing the COVID-19 crisis in his home city of Sao Paulo, Brazil. The most populous city in the Western and Southern hemispheres, Sao Paolo has been struck particularly hard by the pandemic – Brazil’s COVID-19 death toll is second only to the United States.
While some cancers are known to be caused by mutations in key genes, genetic mutation does not always tell the full story. Epigenetic changes—which do not affect the DNA sequence itself, but rather the degree to which a gene is expressed—can play an important role in cancer as well. Such is the case with acute lymphoblastic leukemia (ALL), the most common form of cancer in children, which has a low incidence of genetic mutation but often coincides with abnormal epigenetic behavior.