We are delighted to announce that Damon Runyon-HHMI Fellow Tyler Starr, PhD, of Fred Hutchinson Cancer Research Center, has been named a 2021 STAT Wunderkind. This award, granted annually to “the best early-career researchers in health and medicine in North America,” recognizes Tyler’s exceptional promise in the study of viruses and our immune systems.
Damon Runyon News
Breast cancer is the most common cancer diagnosed in women worldwide, and an estrogen receptor known as ERα plays a critical role in more than 70% of these cancers. In healthy cells, when bound to estrogen, ERα activates a signaling pathway that controls cell growth, proliferation, and survival. In breast cancer, an abnormal variant of ERα sends this pathway into overdrive. For patients with ERα-positive breast cancer, estrogen-blocking hormone therapies like tamoxifen can prolong survival. Up to half of these patients will acquire resistance, however, creating an urgent need for novel treatment strategies targeting ERα.
Damon Runyon was thrilled to hold its Annual Breakfast in person at Cipriani 42nd Street in New York on October 20. The event raised over $1 million to support promising early-career scientists pursuing innovative strategies to prevent, diagnose, and treat all forms of cancer.
Myeloproliferative neoplasms (MPNs) are cancers that arise when a mutated blood stem cell begins to produce too many red blood cells, white blood cells, or platelets. A number of mutations can drive MPNs, and studies have demonstrated that different mutations result in different clinical outcomes. For example, between the two most commonly mutated genes, JAK2 and CALR, JAK2-mutated MPNs tend to be the more aggressive cancers.
It is with great sadness that we share the news that one of our longtime Board Members, David M. Livingston, MD, passed away unexpectedly on Sunday, October 17.
Damon Runyon is delighted to announce that the 2021 Nobel Prize in Physiology or Medicine has been awarded jointly to David Julius, PhD, and Ardem Patapoutian, PhD, "for their discoveries of receptors for temperature and touch."
As cancer cells evolve in response to treatment or other environmental pressures, a patient may end up with a highly diverse population of cancer cells circulating throughout their body. In these cases, a single biopsy from the tissue where the cancer originated is not enough to fully understand the cancer’s genome or how best to target it. Liquid biopsies are thus increasingly used to study circulating tumor cells (CTCs) in the blood, with single-cell CTC sequencing emerging as the next step in unraveling the mysteries of disease progression and treatment response.
Sometimes, while investigating one question, scientists learn the answer to an entirely different one. Some of the most significant medical breakthroughs have begun with open-ended curiosity: insulin, for example, was discovered after two German doctors removed a dog’s pancreas in 1890 to better understand its role in digestion.
Because cancer cells proliferate at a higher rate than normal cells, they require more energy than normal cells, and thus need to rewire the cell’s energy-producing processes to meet this excessive demand. Think of spoiled Veruca Salt in Charlie and the Chocolate Factory rerouting the chocolate bar supply directly to her father’s factory, where his workers unwrapped them faster than any normal child could, expediting her discovery of a Golden Ticket.
One way to determine how successfully a patient’s cancer treatment has eradicated the disease is to check the bloodstream for free-floating DNA originating from tumor cells, also known as circulating tumor DNA (ctDNA). The detection of ctDNA can serve as a powerful prognostic tool, allowing clinicians to assess the effectiveness of treatment and predict the likelihood of disease recurrence.