Up to 50% of patients with acute myeloid leukemia (AML) have a genetic alteration called DNA methylation, in which a carbon methyl group is added to the DNA molecule, typically turning the methylated gene "off." A mainstay of therapy is the use of hypomethylating agents, which prevent copying of these modifications during cell division, but this therapy is effective in only 20-30% of patients. Using chemical and genetic manipulation in mouse bone marrow, Dr. Viny [Damon Runyon-Doris Duke Clinical Investigator] aims to determine the effect of DNA methylation on the ability of specific regions of the genome to be accessible to proteins involved with gene expression and other regions to be inaccessible and "silenced." In a prospective phase II clinical trial, he will treat relapsed AML patients with dual hypomethylating agents. By studying these patients' genetic profiles, he aims to determine the genetic features that contribute to therapy response, paving the way for more effective interventions to be developed for patients with acute myeloid leukemia. Dr. Viny was previously a Damon Runyon Fellow.
Damon Runyon Researchers
Meet Our ScientistsAaron D. Viny, MD
Project title: "Epigenetic coupling of DNA methylation and chromatin structure on leukemic transformation and therapeutic response"
Institution: Columbia University
Named Award: Damon Runyon-Doris Duke Clinical Investigator
Award Program: Clinical Investigator
Sponsor(s) / Mentor(s): Emmanuelle Passegué, PhD, and Joseph G. Jurcic, MD
Cancer Type: Blood
Research Area: Chromatin Biology